نظرية فيثاغورس (Pythagorean theorem ) في الرياضيات والتي تعرف أيضاً بإسم مبرهنة فيثاغورس ، وهي العلاقة الأساسية في الهندسة الإقليدية بين الاطراف الثلاثة للمثلث القائم الزاوية .
كانت نظرية فيثاغورس كواحدة من أقدم النظريات المعروفة للحضارات القديمة ، وترجع هذه النظرية الشهيرة لعالم الرياضيات اليوناني والفيلسوف فيثاغورس . فيثاغورس هو من أسس مدرسة فيثاغورس للرياضيات في كورتنى ، في جنوب إيطاليا ، وينسب له العديد من المساهمات في الرياضيات . تنص نظرية فيثاغورس على أنه في أي مثلث قائم الزاوية يكون مجموع مربع طول الضلعين المحاذيين للزاوية القائمة مساويا لمربع طول الوتر . سميت هذه النظرية المبرهنة بهذا الإسم ، نسبة إلى العالم فيثاغورس الذي كان رياضيا وفيلسوفا وعالم الفلك في اليونان القديمة .
تعرف على نظرية فيثاغورس
نظرية فيثاغورس هي واحدة من أشهر النظريات ، والتي دائما مايتعلمها التلميذ في المدرسة في مادة الرياضيات بقسم الرياضيات الهندسية ، فهي أحد النظريات التابعة للهندسة الإقليدية ، وهي الهندسة الموجودة منذ زمن إقليدس والتي يستخدم بها المسطرة والفرجار من أجل إنشاء الأشكال الهندسية المختلفة .
ماهو نص نظرية فيثاغورس وتطبيقاتها
تنص نظرية فيثاغورس على أن مربع طول الوتر في المثلث القائم الزاوية يساوي مجموع مربع طول الضلعيين الآخرين في ذاك المثلث ، والوتر هو الضلع الأطول في المثلث القائم الزاوية والذي يقابل الزاوية القائمة الزاوية ، فلو كان مربع طول الوتر في مثلث قائم الزاوية .
وهناك نظرية فيثاغورس العكسية ، والتي يتم فيها عكس نظرية فيثاغورس لإثبات أن المثلث هو المثلث القائم الزاوية ، حيث أي مثلث لو كان مربع طول أطول ضلع فيه يساوي مجموع مربع طول الضلعين الآخرين ، وبذلك فإن هذا المثلث هو المثلث القائم الزاوية ، ويكون للضلع الأطول فيه أن يسمى بالزاوية القائمة أو الوتر ، وهي الزاوية المقابلة لهذا الضلع . ومن هنا ، تثبت هذه النظرية أن المثلث هو المثلث الغير قائم الزاوية بعدم تحقق هذه النظرية .
ماهو شرح نظرية فيثاغورس
نظرية فيثاغورس هي واحدة من أهم النظريات شهرة في الرياضيات ، والتي حظيت باهتمام الكثير من العلماء وكذلك المدرسين والطلبة حتى يومنا هذا ، ونرى أن نظرية فيثاغورس هي واحدة من نظريات الهندسة الإقليدية القديمة المختصة بالمثلث القائم الزاوية ؛ هذا المثلث القائم الزاوية هو المثلث الذي تكون إحدى زواياه قائمة الزاوية (أي تساوي 90°) ، والوتر هو الضلع المقابل للزاوية القائمة .
توضيح نظرية فيثاغورس
أكتشف فيثاغورس أن عدد المثلثات القائمة الزاوية ، والتي تتألف من أضلاع أطوالها (3 ، 4 ، 5) أو مضاعفاتها مثل (6 ، 8 ، 10) و(9 ،12 ،15) هي المثلثات التي ينطبق عليها النظرية ، ومن هنا وضع فيثاغورس أول طرح لنظريته وهو أن أطوال أضلاع أي مثلث قائم هي (3 ، 4 ، 5) أو مضاعفاتها . كما استنتج فيثاغورس أن مربع طول الضلع الكبير المقابل للزاوية القائمة في مثلث أطوال أضلاعه (3 ، 4 ، 5) تساوي العدد الناتج من جمع مربعي طولي الضلعين الباقيين . ونورد هنا مثال لتطبيق نظرية فيثاغورس في مثالاً توضيحياً: أرسم مثلثاً قائم الزاوية وطول ضلعي القائمة فيه (6 سم ، 8 سم) على الترتيب ، جد طول الضلع الثالث (الوتر) ؟
حل المثال :
بإستخدام نظرية فيثاغورس ، الإجابة :
(أ جـ)^2 = ((أ ب) ^2 + (ب جـ) ^2) .
(أ جـ)^2 = ((6) ^2 + (8) ^2) .
(أ جـ)^2 = ((36) + (64) .
(أ جـ)^2 = (100) .
(أ جـ) = (10) .