يوجد طريقة معروفة لحساب مساحة المثلث، و هي ضرب القاعدة و الارتفاع ثم القسمة على اثنين، ولكن ايضًا يوجد عدة طرق لحساب المساحة بالاعتماد على الأبعاد.

استخدام القاعدة مع الارتفاع
القاعدة هي طول واحد من أضلاع المثلث و في الغالب يكون الضلع الموجود في الأسفل، أما الإرتفاع فهو الطول الواصل بين القاعدة و الزاوية العليا للمثلث بحيث تكون عمودية على القاعدة، و ينضم الارتفاع و القاعدة لكي يتم تكوين زاوية مقدارها تسعين درجة، و هذا يكون في المثلث القائم.

أما المثلث الغير قائم فان الارتفاع يقطع منتصف الشكل، و لكي يتم حساب المساحة يتم تحديد القاعدة و الارتفاع، فمثلا اذا وجد مثلث طول ارتفاعه يساوي ثلاثة سم و القاعدة خمسة سم، فان المساحة تساوي ½ * (3 سم * 5 سم)، و لحل المعادلة يتم ضرب طول الارتفاع في طول القاعدة، فيكون الناتج ½ * 3 سم * 5 سم و يساوي ½ * 15 سم2 و بهذا فان المساحة تساوي  7.5 سم2.

استخدام أطوال أضلاع المثلث
لكي يتم حساب نصف محيط المثلث فالأمر بسيط، يتم جمع كل أطوال أضلاع المثلث و من ثم يتم قسمة الناتج على اثنين، أما صيغة إيجاد نصف محيط المثلث فهي (طول الضلع أ + طول الضلع ب + طول الضلع ج) / 2 ’’’، أو ’’’ ح = (أ + ب + ج) / 2، فمثلا اذا كان أطوال أضلاع المثلث القائم هي ثلاثة سم و أربعة سم و خمسة سم.

و هذه الأرقام يمكن التعويض بها في الصيغة و إيجاد نصف محيط المثلث، و محيط المثلث يكون ح و بهذا فإن ح تساوي (3 + 4 + 5)/2 تساوي 2/12 و يصبح الناتج 6.

التعويض بالقيم
الصيغة التي يتم استخدامها لايجاد مساحة المثلث تسمى هيرون، و هي تكون بهذا الشكل المساحة = √ [ح (ح – أ)(ح – ب)(ح – ج)]’، و من المعلوم أن ح ترمز إلى نصف محيط المثلث أما أ و ب و ج فالمقصود بهم أطوال أضلاع المثلث، و لكي يتم الحل في البداية يتم حل ما بين الأقواس ثم بعده حل ما في الجذر التربيعي، و في النهاية يتم حل الجذر التربيعي نفسه، فالمعادلة بعد التعويض تكون  √ [6 (6- 3)(6- 4)(6- 5)].

و يتم طرح كل القيم الموجودة بين كل قوسين، فبكل بساطة يتم طرح 6-3و 6-4 و6-5، و يبدوا الناتج 6-3 = 3 و   6-4 = 2 و  6-5 = 1 و بهذا تكون المساحة √[6 (3)(2)(1)]، و بعد ذلك يتم ضرب ناتج الأقواس في بعضها فيكون ضرب ثلاثة في واحد في اثنين للحصول على ناتج الضرب و هو ستة.

و الرقم ستة المقصود به هو نصف محيط المثلث، و هو أيضا يساوي 6 * 6 = 36، و في النهاية يتم ايجاد الجذر التربيعي حيث أن الجذر التربيعي للرقم 36 هو 6 و ضروري جدا كتابة الوحدات التي تم البدء بها و هي السنتيمتر و يتم كتابة الإجابة النهائية بالسنتيمتر المربع، و بهذا فإن مساحة المثلث القائم الذي أطوال أضلاعه هي ثلاثة و أربعة و خمسة هي 6 سم 2.

ايجاد ارتفاع مثلث متساوي الأضلاع
من المعروف أن المثلث متساوي الأضلاع تكون أضلاعه متساوية و زواياه الثلاثة تساوي كل منهما ستين درجة، فاذا تم قطع مثلث متساوي الأضلاع إلى نصفين فيكون موجود مثلثين متطابقين و قائمي الزاوية، فمثلا يتم الان استخدام مثلث متساوي الاضلاع و طول ضلعه ثمانية.

و يستخدم في هذا المثال نظرية فيثاغورس، و هذه النظرية تنص على أن أي مثلث قائم الزاوية يحتوي على أضلع أ و ب و الوتر ج تكون بصيغة أ2 + ب2 = ج2، و هذه النظرية يمكن استخدامها لمعرفة حساب ارتفاع مثلث متساوي الأضلاع، يتم قسمة المثلث متساوي الأضلاع إلى نصفين و يحدد أطوال الأضلاع أ و ب و ج، كما أن طول الوتر ج يكون مساوي للطول الأصلي للضلع قبل أن يتم تقسيم المثلث، أما طول أ فيساوي نصف طول الضلع و طول ب هو ارتفاع المثلث المراد حسابه.

فاذا تم تطبيق المعادلة على المثلث متساوي الأضلاع و الذي يساوي فيه طول الضلع 8 فان ج تساوي 8 و أ تساوي 4، بعد ذلك يتم ادخال معادلة نظرية فيثاغورث و في البداية يتم تربيع ج و أ عن طريق ضرب كل منهما في نفسه، ثم يتم طرح قيمة أ2 من ج2 فتكون   * 42 ب2 = 82  و تساوي *  16 + ب2 = 64 تساوي ب2  = 48 و في النهاية يكون الجذر التربيعي هو (48) = 6.93.