هناك عدد من قواعد الرياضيات الهامة التي يعتمد عليها في القوانين و الحسابات المختلفة ، و الجدير بالذكر أن بعض هذه القواعد يتم تطبيقه على الحياة العملية في عدد من الأمور ، و من بينها مبادئ الاستقراء الرياضي.
الاستقراء الرياضي
– الاستقراء الرياضي هو تقنية إثبات رياضية ، يتم استخدامها بشكل أساسي لإثبات أن الخاصية P ( n ) تحمل لكل رقم طبيعي n ، أي بالنسبة إلى n = 0 ، 1 ، 2 ، 3 ، وهكذا. يمكن استخدام الاستعارات بشكل غير رسمي لفهم مفهوم الاستقراء الرياضي ، مثل استعارة سقوط الدومينو أو تسلق السلم.
– يثبت الاستقراء الرياضي أنه بإمكاننا الصعود إلى أعلى مستوى نحبه على سلم ، من خلال إثبات أنه يمكننا الصعود إلى الدرجة السفلية ( الأساس ) و أنه من كل درجة يمكننا الصعود إلى المرحلة التالية ( الخطوة ).
طريقة الاستقراء الرياضي
– تتطلب طريقة الاستقراء اثنتين من الحالات ، في الحالة الأولى ، و تسمى الحالة الأساسية ، في بعض الأحيان تثبت مثلا أن عقار يحمل عدد 0 ، أما الحالة الثانية و تعرف خطوة الاستقراء ، بأنه يثبت أنه إذا كنت تملك العقار لعدد طبيعي واحد ن ، ثم يحتفظ به للرقم الطبيعي التالي n + 1. هاتان الخطوتان تنشئان الخاصية P ( n ) لكل رقم طبيعي n = 0 ، 1 ، 2 ، 3 ، … لا يلزم أن تبدأ الخطوة الأساسية بصفر ، و غالبًا ما يبدأ بالرقم الأول ، و يمكن أن يبدأ بأي رقم طبيعي ، مما يثبت حقيقة الخاصية لجميع الأعداد الطبيعية التي تزيد عن أو تساوي رقم البداية.
– يمكن تمديد هذه الطريقة لإثبات البيانات حول طرق أكثر عمومية جيدة ، مثل الأشجار ؛ هذا التعميم، والمعروفة باسم الحث الهيكلي ، و يستخدم في المنطق الرياضي و علوم الكمبيوتر ، و يرتبط الاستفراء الرياضي بهذا المعنى الممتد ارتباطًا وثيقًا بالرجوع ، الاستقراء الرياضي في بعض الأشكال ، هو أساس كل البراهين الصحيحة لبرامج الكمبيوتر .
– على الرغم من أن اسمها قد يوحي بخلاف ذلك ، فلا ينبغي إساءة فهم الاستقراء الرياضي كشكل من أشكال التفكير الاستقرائي كما هو مستخدم في الفلسفة (انظر أيضًا مشكلة الاستقراء ) ، الحث الرياضي هو قاعدة الاستدلال المستخدمة في البراهين الرسمية ، و الدليل على الحث الرياضي هو في الواقع أمثلة على الاستنتاج المنطقي .
تاريخ الاستقراء الرياضي
– في 370 قبل الميلاد، درس أفلاطون مثالا مبكرا لدليل الاستقرائي الضمني ، ويمكن الاطلاع على أقدم آثار ضمنية من الاستقراء الرياضي في إقليدس ، دليل على أن عدد من حاول دراستها هو لانهائي ، و قد قيل إنه إذا كان 1،000،000 حبة من الرمال شكلت كومة ، وأزالت إزالة حبة واحدة من كومة ، ثم واحدة تشكل حبة الرمل ، و قد تم تقديم دليل ضمني من خلال الحث الرياضي للتسلسلات الحسابية في الفاخري الذي كتبه الكراجي حوالي عام 1000 ميلادي ، والذي استخدمه لإثبات النظرية ذات الحدين وخصائص مثلث باسكال .
– لم يذكر أي من هؤلاء علماء الرياضيات القدامى صراحة فرضية الاستقراء ، وكانت قضية مماثلة أخرى ، كما أن فرانشيسكو ماوروليكو في كتابه الثنائي Arithmeticorum يبري (1575) ، يستخدم هذه التقنية لإثبات أن مجموع أول ن الأعداد الصحيحة هو ن 2 . كما أعطى باسكال الصيغة الصريحة الأولى لمبدأ الاستقراء في كتابه Traité du triangle arithmétique (1665).
– استفاد فرنسي آخر هو فيرما من مبدأ ذي صلة ، وهو دليل غير مباشر من خلال النسب اللانهائية ، و قد تم استخدام فرضية الحث من قبل السويسري ينيعقوب برنولي ، و منذ ذلك الحين أصبح أكثر شهرة ، و قد جاءت المعالجة الصارمة و المنهجية لهذا المبدأ فقط في القرن التاسع عشر ، مع جورج بول ، أوغسطس دي مورجان ، وتشارلز ساندرز بيرس ، جيوسيبي بيانو ، وريتشارد ديديكيند .
وصف الاستقراء الرياضي
– إن أبسط أشكال الاستقراء الرياضي وأكثرها شيوعًا يستنتج أن العبارة التي تتضمن رقمًا طبيعيًا n تحملها جميع قيم n ، و يتكون الدليل من خطوتين الاولى في حالة قاعدة إثبات أن البيان يحمل لأول عدد طبيعي ن 0 ، و في حالة خطوة الاستقراء ، التي تثبت أن كل ن ≥ ن 0 ، إذا استمر البيان ل ن ، ثم تحتفظ بها ل ن + 1. وبعبارة أخرى، تفترض بيان يحمل لبعض العدد الطبيعي التعسفي ن ≥ ن 0 ، و إثبات أنه ثم يحمل البيان ل n + 1.
– تسمى الفرضية في الخطوة الاستقرائية ، التي يحملها البيان بالنسبة لبعض n ، بفرضية الاستقراء أو الفرضية الاستقرائية . لإثبات الخطوة الاستقرائية ، يفترض المرء فرضية الاستقراء ثم يستخدم هذا الافتراض ، الذي يتضمن n ، لإثبات العبارة لـ n + 1.